Evaluation of accuracy and reliability of PulseOn optical heart rate monitoring device

Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug:2015:430-3. doi: 10.1109/EMBC.2015.7318391.

Abstract

PulseOn is a wrist-worn optical heart rate (HR) monitor based on photoplethysmography. It utilizes multi-wavelength technology and optimized sensor geometry to monitor blood flow at different depths of skin tissue, and it dynamically adapts to an optimal measurement depth in different conditions. Movement artefacts are reduced by adaptive movement-cancellation algorithms and optimized mechanics, which stabilize the sensor-to-skin contact. In this paper, we evaluated the accuracy and reliability of PulseOn technology against ECG-derived HR in laboratory conditions during a wide range of physical activities and also during outdoor sports. In addition, we compared the performance to another on-the-shelf wrist-worn consumer product Mio LINK(®). The results showed PulseOn reliability (% of time with error <;10bpm) of 94.5% with accuracy (100% - mean absolute percentage error) 96.6% as compared to ECG (vs 86.6% and 94.4% for Mio LINK(®), correspondingly) during laboratory protocol. Similar or better reliability and accuracy was seen during normal outdoor sports activities. The results show that PulseOn provides reliability and accuracy similar to traditional chest strap ECG HR monitors during cardiovascular exercise.

MeSH terms

  • Algorithms
  • Heart Rate*
  • Monitoring, Physiologic
  • Photoplethysmography
  • Reproducibility of Results