Effects of Double Active Layer and Acetic Acid Stabilizer on the Electrical Properties of a Solution-Processed Zinc Tin Oxide Thin-Film Transistor

J Nanosci Nanotechnol. 2015 Oct;15(10):7743-7. doi: 10.1166/jnn.2015.11200.

Abstract

We investigated the effects of a double active layer (DAL) and acetic acid stabilizer on zinc tin oxide (ZTO) thin-film transistors (TFTs) fabricated using a solution process. The DAL was composed of two layers created by a ZTO solution doped with the same or different percentiles of an atomic Sn concentration (30 at.%, 60 at.%). The electrical performance of the ZTO TFTs significantly was improved after we added acetic acid (AA) instead of monoethanolamine (MEA). This was accomplished by applying a type 2 DAL (bottom layer: Sn 60 at.%, top layer: Sn 30 at.%, 60/30) instead of other types (30/30 or 60/60). It was demonstrated that AA plays a role in lowering the decomposition temperature, enhancing the metal-oxygen bridge, and decreasing hydroxyl groups in the film. In addition, the type 2 DAL structure (60/30) lowered the Ioff of the ZTO TFT and controlled the carrier concentration in the channel. The best performances were obtained at a Sn concentration of 60 at.% in the bottom ZTO layer and 30 at.% in the top ZTO layer, with AA added as a stabilizer. The ZTO TFT exhibited an on/off ratio of 1.1 x 10(9), a saturation mobility of 5.04 cm2/V·s, a subthreshold slope of 0.11 V/decade, and a threshold voltage of 1.6 V.

Publication types

  • Research Support, Non-U.S. Gov't