Folding of small knotted proteins: Insights from a mean field coarse-grained model

J Chem Phys. 2015 Dec 28;143(24):243121. doi: 10.1063/1.4934541.

Abstract

A small but relevant number of proteins whose native structure is known features nontrivial topology, i.e., they are knotted. Understanding the process of folding from a swollen unknotted state to the biologically relevant native conformation is, for these proteins, particularly difficult, due to their rate-limiting topological entanglement. To shed some light into this conundrum, we introduced a structure-based coarse-grained model of the protein, where the information about the folded conformation is encoded in bonded angular interactions only, which do not favor the formation of native contacts. A stochastic search scheme in parameter space is employed to identify a set of interactions that maximizes the probability to attain the knotted state. The optimal knotting pathways of the two smallest knotted proteins, obtained through this approach, are consistent with the results derived by means of coarse-grained as well as full atomistic simulations.

MeSH terms

  • Models, Molecular
  • Protein Folding*
  • Proteins / chemistry*
  • Stochastic Processes

Substances

  • Proteins