Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide

J Phys Chem Lett. 2015 Oct 15;6(20):4073-82. doi: 10.1021/acs.jpclett.5b01559. Epub 2015 Sep 30.

Abstract

The electrochemical reduction of CO2 has gained significant interest recently as it has the potential to trigger a sustainable solar-fuel-based economy. In this Perspective, we highlight several heterogeneous and molecular electrocatalysts for the reduction of CO2 and discuss the reaction pathways through which they form various products. Among those, copper is a unique catalyst as it yields hydrocarbon products, mostly methane, ethylene, and ethanol, with acceptable efficiencies. As a result, substantial effort has been invested to determine the special catalytic properties of copper and to elucidate the mechanism through which hydrocarbons are formed. These mechanistic insights, together with mechanistic insights of CO2 reduction on other metals and molecular complexes, can provide crucial guidelines for the design of future catalyst materials able to efficiently and selectively reduce CO2 to useful products.