Catalytic Reduction of CO2 by Renewable Organohydrides

J Phys Chem Lett. 2015 Dec 17;6(24):5078-92. doi: 10.1021/acs.jpclett.5b01827. Epub 2015 Dec 10.

Abstract

Dihydropyridines are renewable organohydride reducing agents for the catalytic reduction of CO2 to MeOH. Here we discuss various aspects of this important reduction. A centerpiece, which illustrates various general principles, is our theoretical catalytic mechanism for CO2 reduction by successive hydride transfers (HTs) and proton transfers (PTs) from the dihydropyridine PyH2 obtained by 1H(+)/1e(-)/1H(+)/1e(-) reductions of pyridine. The Py/PyH2 redox couple is analogous to NADP(+)/NADPH in that both are driven to effect HTs by rearomatization. High-energy radical intermediates and their associated high barriers/overpotentials are avoided because HT involves a 2e(-) reduction. A HT-PT sequence dictates that the reduced intermediates be protonated prior to further reduction for ultimate MeOH formation; these protonations are aided by biased cathodes that significantly lower the local pH. In contrast, cathodes that efficiently reduce H(+) such as Pt and Pd produce H2 and create a high interfacial pH, both obstructing dihydropyridine production and formate protonation and thus ultimately CO2 reduction by HTPTs. The role of water molecule proton relays is discussed. Finally, we suggest future CO2 reduction strategies by organic (photo)catalysts.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.