Response of a Wild Edible Plant to Human Disturbance: Harvesting Can Enhance the Subsequent Yield of Bamboo Shoots

PLoS One. 2015 Dec 31;10(12):e0146228. doi: 10.1371/journal.pone.0146228. eCollection 2015.

Abstract

Wild edible plants, ecological foodstuffs obtained from forest ecosystems, grow in natural fields, and their productivity depends on their response to harvesting by humans. Addressing exactly how wild edible plants respond to harvesting is critical because this knowledge will provide insights into how to obtain effective and sustainable ecosystem services from these plants. We focused on bamboo shoots of Sasa kurilensis, a popular wild edible plant in Japan. We examined the effects of harvesting on bamboo shoot productivity by conducting an experimental manipulation of bamboo shoot harvesting. Twenty experimental plots were prepared in the Teshio Experimental Forest of Hokkaido University and were assigned into two groups: a harvest treatment, in which newly emerged edible bamboo shoots were harvested (n = 10); and a control treatment, in which bamboo shoots were maintained without harvesting (n = 10). In the first year of harvesting (2013), bamboo shoot productivities were examined twice; i.e., the productivity one day after harvesting and the subsequent post-harvest productivity (2-46 days after harvesting), and we observed no difference in productivity between treatments. This means that there was no difference in original bamboo shoot productivity between treatments, and that harvesting did not influence productivity in the initial year. In contrast, in the following year (2014), the number of bamboo shoots in the harvested plots was 2.4-fold greater than in the control plots. These results indicate that over-compensatory growth occurred in the harvested plots in the year following harvesting. Whereas previous research has emphasized the negative impact of harvesting, this study provides the first experimental evidence that harvesting can enhance the productivity of a wild edible plant. This suggests that exploiting compensatory growth, which really amounts to less of a decline in productivity, may be s a key for the effective use of wild edible plants.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bambusa / growth & development*
  • Ecosystem
  • Humans
  • Japan
  • Plant Shoots / growth & development*
  • Plants, Edible / embryology*
  • Sasa / growth & development

Grants and funding

This work was supported by KAKENHI Grant Number 26740045 and 24370004 from Japan Society for the Promotion of Science. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.