Factors controlling air quality in different European subway systems

Environ Res. 2016 Apr:146:35-46. doi: 10.1016/j.envres.2015.12.007. Epub 2015 Dec 22.

Abstract

Sampling campaigns using the same equipment and methodology were conducted to assess and compare the air quality at three South European subway systems (Barcelona, Athens and Oporto), focusing on concentrations and chemical composition of PM2.5 on subway platforms, as well as PM2.5 concentrations inside trains. Experimental results showed that the mean PM2.5 concentrations widely varied among the European subway systems, and even among different platforms within the same underground system, which might be associated to distinct station and tunnel designs and ventilation systems. In all cases PM2.5 concentrations on the platforms were higher than those in the urban ambient air, evidencing that there is generation of PM2.5 associated with the subway systems operation. Subway PM2.5 consisted of elemental iron, total carbon, crustal matter, secondary inorganic compounds, insoluble sulphate, halite and trace elements. Of all metals, Fe was the most abundant, accounting for 29-43% of the total PM2.5 mass (41-61% if Fe2O3 is considered), indicating the existence of an Fe source in the subway system, which could have its origin in mechanical friction and wear processes between rails, wheels and brakes. The trace elements with the highest enrichment in the subway PM2.5 were Ba, Cu, Mn, Zn, Cr, Sb, Sr, Ni, Sn, Co, Zr and Mo. Similar PM2.5 diurnal trends were observed on platforms from different subway systems, with higher concentrations during subway operating hours than during the transport service interruption, and lower levels on weekends than on weekdays. PM2.5 concentrations depended largely on the operation and frequency of the trains and the ventilation system, and were lower inside the trains, when air conditioning system was operating properly, than on the platforms. However, the PM2.5 concentrations increased considerably when the train windows were open. The PM2.5 levels inside the trains decreased with the trains passage in aboveground sections.

Keywords: Commuting; Exposure; PM(2.5); Subway stations; Trains.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants / analysis*
  • Air Pollution, Indoor / analysis*
  • Environmental Monitoring
  • Greece
  • Particle Size
  • Particulate Matter / analysis*
  • Portugal
  • Railroads*
  • Spain
  • Spatial Analysis
  • Time Factors

Substances

  • Air Pollutants
  • Particulate Matter