Model systems to unravel the molecular mechanisms of heavy metal tolerance in the ericoid mycorrhizal symbiosis

Mycorrhiza. 2016 May;26(4):263-74. doi: 10.1007/s00572-015-0675-y. Epub 2015 Dec 28.

Abstract

Ericoid mycorrhizal plants dominate in harsh environments where nutrient-poor, acidic soil conditions result in a higher availability of potentially toxic metals. Although metal-tolerant plant species and ecotypes are known in the Ericaceae, metal tolerance in these plants has been mainly attributed to their association with ericoid mycorrhizal fungi. The mechanisms underlying plant protection by the fungal symbiont are poorly understood, whereas some insights have been achieved regarding the molecular mechanisms of heavy metal tolerance in the fungal symbiont. This review will briefly introduce the general features of heavy metal tolerance in mycorrhizal fungi and will then focus on the use of "omics" approaches and heterologous expression in model organisms to reveal the molecular bases of fungal response to heavy metals. Functional complementation in Saccharomyces cerevisiae has allowed the identification of several ericoid mycorrhizal fungi genes (i.e., antioxidant enzymes, metal transporters, and DNA damage repair proteins) that may contribute to metal tolerance in a metal-tolerant ericoid Oidiodendron maius isolate. Although a powerful system, the use of the yeast complementation assay to study metal tolerance in mycorrhizal symbioses has limitations. Thus, O. maius has been developed as a model system to study heavy metal tolerance mechanisms in mycorrhizal fungi, thanks to its high metal tolerance, easy handling and in vitro mycorrhization, stable genetic transformation, genomics, transcriptomic and proteomic resources.

Keywords: Ericoid mycorrhizal fungi; Metal tolerance; Omics approaches; Yeast model system.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Ericaceae / microbiology*
  • Ericaceae / physiology
  • Fungal Proteins / chemistry
  • Fungal Proteins / genetics
  • Fungal Proteins / metabolism
  • Fungi / chemistry
  • Fungi / genetics
  • Fungi / isolation & purification
  • Fungi / physiology*
  • Metals, Heavy / metabolism*
  • Models, Biological
  • Mycorrhizae / chemistry
  • Mycorrhizae / genetics
  • Mycorrhizae / isolation & purification
  • Mycorrhizae / physiology*
  • Proteomics
  • Symbiosis*

Substances

  • Fungal Proteins
  • Metals, Heavy