Cellular Mechanisms of Action of Drug Abuse on Olfactory Neurons

Int J Environ Res Public Health. 2015 Dec 22;13(1):ijerph13010005. doi: 10.3390/ijerph13010005.

Abstract

Cannabinoids (Δ9-tetrahydrocannabinol) are the active ingredient of marijuana (cannabis) which is the most commonly abused illicit drug in the USA. In addition to being known and used as recreational drugs, cannabinoids are produced endogenously by neurons in the brain (endocannabinoids) and serve as important signaling molecules in the nervous system and the rest of the body. Cannabinoids have been implicated in bodily processes both in health and disease. Recent pharmacological and physiological experiments have described novel aspects of classic brain signaling mechanisms or revealed unknown mechanisms of cellular communication involving the endocannabinoid system. While several forms of signaling have been described for endocannabinoids, the most distinguishing feature of endocannabinoids is their ability to act as retrograde messengers in neural circuits. Neurons in the main olfactory bulb express high levels of cannabinoid receptors. Here, we describe the cellular mechanisms and function of this novel brain signaling system in regulating neural activity at synapses in olfactory circuits. Results from basic research have the potential to provide the groundwork for translating the neurobiology of drug abuse to the realm of the pharmacotherapeutic treatment of addiction, specifically marijuana substance use disorder.

Keywords: brain; cannabinoid; central nervous system; drug abuse; drug addiction; electrophysiology; health disparity; marijuana; neuroscience; olfaction.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Brain / drug effects*
  • Cannabinoid Receptor Modulators / physiology*
  • Cannabis / chemistry
  • Endocannabinoids / physiology*
  • Humans
  • Marijuana Abuse / physiopathology*
  • Neurons / drug effects*
  • Receptors, Cannabinoid / drug effects*
  • Signal Transduction / drug effects*
  • Smell / drug effects
  • United States

Substances

  • Cannabinoid Receptor Modulators
  • Endocannabinoids
  • Receptors, Cannabinoid