Quantum communication with macroscopically bright nonclassical states

Opt Express. 2015 Nov 30;23(24):31534-43. doi: 10.1364/OE.23.031534.

Abstract

We analyze homodyne detection of macroscopically bright multimode nonclassical states of light and propose their application in quantum communication. We observe that the homodyne detection is sensitive to a mode-matching of the bright light to the highly intense local oscillator. Unmatched bright modes of light result in additional noise which technically limits detection of Gaussian entanglement at macroscopic level. When the mode-matching is sufficient, we show that multimode quantum key distribution with bright beams is feasible. It finally merges the quantum communication with classical optical technology of visible beams of light.