Quantum dot decorated aligned carbon nanotube bundles for a performance enhanced photoswitch

Nanoscale. 2016 Apr 28;8(16):8547-52. doi: 10.1039/c5nr07494k. Epub 2015 Dec 22.

Abstract

Photoactive materials that are triggered by the irradiation of light to generate an electrical response provide an ecofriendly platform to afford efficient power sources and switches. A chemical assembly of well-known elements with aligned carbon nanotube bundles is reported here, which was employed to form an efficient photo-induced charge transfer device. The primary elements of this device are ultra-long multi-walled carbon nanotube (MWCNT) bundles, polyaniline (PANI) thin film coating, and CdSe quantum dots (QDs). Highly ordered and horizontally aligned MWCNT bundles were coated with PANI to enhance charge transfer properties of active QDs in this platform. The obtained device (CdSe-MWCNT@PANI) constructed on a silicon base exhibits highly efficient power conversion capabilities owing to the aligned MWCNT bundle assisted enhanced charge transport pathways generated within the device. The device also shows a short circuit current density (Jsc) of 9.81 mA cm(-2) and an open circuit voltage (Voc) of 0.46 V. The power conversion efficiency (PCE) of the device is 5.41%, and the current response is quite stable, highly responsive, and reproducible.

Publication types

  • Research Support, Non-U.S. Gov't