HCHs and DDTs in Yellow River of Henan section-a typical agricultural area in China: levels, distributions and risks

Environ Geochem Health. 2016 Dec;38(6):1241-1253. doi: 10.1007/s10653-015-9787-8. Epub 2015 Dec 22.

Abstract

The levels, potential sources and ecological risks of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) in Yellow River of Henan section, a typical agricultural area in China, were investigated. Surface water samples and suspended particulate matters (SPMs) were collected from 23 sites during two seasons. In wet season, the residues of ∑HCHs (α-HCH, β-HCH, γ-HCH and δ-HCH) and ∑DDTs (p,p'-DDT, o,p'-DDT, p,p'-DDE, p,p'-DDD) ranged from 41.7 to 290 and 4.42 to 269 ng/L in surface water, while those varied from 0.86 to 157 and 1.79 to 96.1 ng/g dw in SPM, respectively. Moreover, in surface water, the levels of HCHs and DDTs in wet season were much higher than those in dry season. The reverse was true for residues of HCHs and DDTs in SPM. Compared with the large rivers in other regions, the levels of HCHs and DDTs in the studied area ranked at high levels and the residual concentrations might cause adverse biological risk, especially for ∑HCHs during wet season. Distributions of HCHs and DDTs delineated that the input of tributaries made a significant effect on the residue of HCHs and DDTs in the mainstream. ∑HCHs in surface water were consist of 26.7 % α-HCH, 30.0 % β-HCH, 37.9 % γ-HCH and 5.45 % δ-HCH and those in SPM contained 5.16 % α-HCH, 22.1 % β-HCH, 60.5 % γ-HCH and 12.2 % δ-HCH on average. Combined with ratios of α-HCH/γ-HCH in surface water (0.70) and in SPM (0.09), the results strongly indicated that lindane was recently used or discharged in the studied area. The mean percentage of DDTs' isomers were 28.7 % p,p'-DDT, 29.8 % o,p'-DDT, 28.1 % p,p'-DDE and 13.4 % p,p'-DDD in surface water, while those were 12.5 % p,p'-DDT, 31.8 % o,p'-DDT, 30.5 % p,p'-DDE and 25.1 % p,p'-DDD in SPM. The ratios of (DDE + DDD)/∑DDTs and o,p'-DDT/p,p'-DDT revealed that the DDTs in the studied area mainly derived from long-term weathering of technical DDTs residue and the input of dicofol.

Keywords: DDTs; Ecological risk; HCHs; SPM; Surface water; Yellow River of Henan section.

MeSH terms

  • Agriculture
  • China
  • DDT / analysis*
  • Dicofol
  • Environmental Monitoring
  • Geologic Sediments / analysis
  • Hexachlorocyclohexane / analysis*
  • Insecticides
  • Pesticide Residues
  • Rivers
  • Seasons
  • Water Pollutants, Chemical / analysis*

Substances

  • Insecticides
  • Pesticide Residues
  • Water Pollutants, Chemical
  • Hexachlorocyclohexane
  • DDT
  • Dicofol