Inhibitory potential of tuberculosis drugs on ATP-binding cassette drug transporters

Tuberculosis (Edinb). 2016 Jan:96:150-7. doi: 10.1016/j.tube.2015.08.004. Epub 2015 Oct 9.

Abstract

Background: Multiple-drug therapy for tuberculosis (TB) and TB-associated co-morbidity increase the likelihood of drug-drug interactions (DDIs). Inhibition of membrane transporters is an important mechanism underlying DDIs. In this study, we assessed the in vitro inhibitory potential of currently used first and second-line TB drugs and of proposed mycobacterial efflux pump inhibitors (EPIs) on the major ABC transporters relevant to drug transport, namely P-gp, BCRP, BSEP and MRP1-5.

Methods: Membrane vesicles isolated from transporter-overexpressing HEK293 cells were used to study the inhibitory action of TB drugs and EPIs on the transport of model substrates [(3)H]-NMQ (P-gp); [(3)H]-E1S (BCRP); [(3)H]-TCA (BSEP); [(3)H]-E217βG (MRP1, 3 and 4) and [(3)H]-MTX (MRP2 and 5).

Results: A strong inhibition (IC50 value <15 μM) was observed for clofazimine (P-gp, BCRP and MRP1), thioridazine (BCRP), timcodar (P-gp, BSEP and MRP1) and SQ109 (P-gp and BCRP). Rifampicin inhibited all transporters, but less potently.

Conclusions: Co-administration of clofazimine, thioridazine, timcodar, SQ109 and possibly rifampicin with drugs that are substrates for the inhibited transporters may lead to DDIs. The mycobacterial EPIs potently inhibited a wider range of human ABC transporters than previously reported. These vesicular transport data are especially valuable considering the current emphasis on development of TB drug regimens.

Keywords: ABC transporters; Drug-drug interactions; Membrane vesicles; Protein overexpression; Tuberculosis; Vesicular transport assay.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B / antagonists & inhibitors
  • ATP Binding Cassette Transporter, Subfamily B / metabolism
  • ATP Binding Cassette Transporter, Subfamily B, Member 11
  • ATP Binding Cassette Transporter, Subfamily G, Member 2
  • ATP-Binding Cassette Transporters / antagonists & inhibitors*
  • ATP-Binding Cassette Transporters / genetics
  • ATP-Binding Cassette Transporters / metabolism
  • Antitubercular Agents / pharmacology*
  • Cell Membrane / drug effects*
  • Cell Membrane / metabolism
  • Dose-Response Relationship, Drug
  • Drug Interactions
  • HEK293 Cells
  • Humans
  • Multidrug Resistance-Associated Proteins / antagonists & inhibitors
  • Multidrug Resistance-Associated Proteins / metabolism
  • Neoplasm Proteins / antagonists & inhibitors
  • Neoplasm Proteins / metabolism
  • Transfection

Substances

  • ABCB1 protein, human
  • ABCB11 protein, human
  • ABCG2 protein, human
  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 11
  • ATP Binding Cassette Transporter, Subfamily G, Member 2
  • ATP-Binding Cassette Transporters
  • Antitubercular Agents
  • Multidrug Resistance-Associated Proteins
  • Neoplasm Proteins