Vertebral Pneumaticity in the Ornithomimosaur Archaeornithomimus (Dinosauria: Theropoda) Revealed by Computed Tomography Imaging and Reappraisal of Axial Pneumaticity in Ornithomimosauria

PLoS One. 2015 Dec 18;10(12):e0145168. doi: 10.1371/journal.pone.0145168. eCollection 2015.

Abstract

Among extant vertebrates, pneumatization of postcranial bones is unique to birds, with few known exceptions in other groups. Through reduction in bone mass, this feature is thought to benefit flight capacity in modern birds, but its prevalence in non-avian dinosaurs of variable sizes has generated competing hypotheses on the initial adaptive significance of postcranial pneumaticity. To better understand the evolutionary history of postcranial pneumaticity, studies have surveyed its distribution among non-avian dinosaurs. Nevertheless, the degree of pneumaticity in the basal coelurosaurian group Ornithomimosauria remains poorly known, despite their potential to greatly enhance our understanding of the early evolution of pneumatic bones along the lineage leading to birds. Historically, the identification of postcranial pneumaticity in non-avian dinosaurs has been based on examination of external morphology, and few studies thus far have focused on the internal architecture of pneumatic structures inside the bones. Here, we describe the vertebral pneumaticity of the ornithomimosaur Archaeornithomimus with the aid of X-ray computed tomography (CT) imaging. Complementary examination of external and internal osteology reveals (1) highly pneumatized cervical vertebrae with an elaborate configuration of interconnected chambers within the neural arch and the centrum; (2) anterior dorsal vertebrae with pneumatic chambers inside the neural arch; (3) apneumatic sacral vertebrae; and (4) a subset of proximal caudal vertebrae with limited pneumatic invasion into the neural arch. Comparisons with other theropod dinosaurs suggest that ornithomimosaurs primitively exhibited a plesiomorphic theropod condition for axial pneumaticity that was extended among later taxa, such as Archaeornithomimus and large bodied Deinocheirus. This finding corroborates the notion that evolutionary increases in vertebral pneumaticity occurred in parallel among independent lineages of bird-line archosaurs. Beyond providing a comprehensive view of vertebral pneumaticity in a non-avian coelurosaur, this study demonstrates the utility and need of CT imaging for further clarifying the early evolutionary history of postcranial pneumaticity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biological Evolution
  • Dinosaurs / anatomy & histology*
  • Phylogeny
  • Skull / anatomy & histology
  • Skull / diagnostic imaging*
  • Spine / anatomy & histology
  • Spine / diagnostic imaging*
  • Tomography, X-Ray Computed / methods
  • Ultrasonography

Grants and funding

This study was funded by the Richard Gilder Graduate School at the American Museum of Natural History (AW, MELG), Kalbfleisch Fellowship and Gerstner Scholarship (JNC) administered by the Richard Gilder Graduate School at the American Museum of Natural History; NSF Graduate Research Fellowship (SLB, AW), NSF DEB 1110357 (SLB), Columbia University (SLB), Royal Society Research Grant RG130018 (SLB), Marie Curie Career Integration Grant FP7-PEOPLE-2013-CIG 630652 (SLB), Department of Science and Technology and National Research Foundation of South Africa Centre of Excellence in Palaeosciences grants in aid of research (JNC), Friedel Sellschop Award through the University of the Witwatersrand (JNC), Palaeontological Scientific Trust (PAST) and its Scatterlings of Africa Programmes (JNC), National Research Foundation of South Africa Incentive Funding for Rated Researchers (JNC), and the American Museum of Natural History Division of Paleontology (AW, MELG, SLB, JC, AD, MAN).