Investigation of the dynamic bending properties of MoS2 thin films by interference colours

Sci Rep. 2015 Dec 18:5:18441. doi: 10.1038/srep18441.

Abstract

A non-contact method for the observation of the elastic deformation of 2D molybdenum disulfide (MoS2) thin films using an ordinary optical microscope is reported. A pulsed laser is used to rapidly increase the bending deformation of the MoS2 thin films via heating. The bending angle of the MoS2 thin films shows high stability, changing only 5% in forty days without external forces. However, the bending angle of the MoS2 thin films substantially decreases after being wetted with the volatile polar solvent tetrahydrofuran (THF), because of its low surface tension. By removing the nano-Newton scale forces on the MoS2 thin films, the bending angle increases significantly within 4 minutes, and this feature of the thin films shows great potential for use in the fabrication of micro-force sensors. This is the first attempt to study the mechanical properties of 2D materials by optical methods. Further utilization of industrially manufactured MoS2 thin films for detecting micro-force qualitatively on the basis of their excellent bending properties would significantly reduce the production costs of micro-force sensors.

Publication types

  • Research Support, Non-U.S. Gov't