Why arboreal snakes should not be cylindrical: body shape, incline and surface roughness have interactive effects on locomotion

J Exp Biol. 2015 Dec;218(Pt 24):3978-86. doi: 10.1242/jeb.129379.

Abstract

Depending on animal size, shape, body plan and behaviour, variation in surface structure can affect the speed and ease of locomotion. The slope of branches and the roughness of bark both vary considerably, but their combined effects on the locomotion of arboreal animals are poorly understood. We used artificial branches with five inclines and five peg heights (≤40 mm) to test for interactive effects on the locomotion of three snake species with different body shapes. Unlike boa constrictors (Boa constrictor), corn snakes (Pantherophis guttatus) and brown tree snakes (Boiga irregularis) can both form ventrolateral keels, which are most pronounced in B. irregularis. Increasing peg height up to 10 mm elicited more of the lateral undulatory behaviour (sliding contact without gripping) rather than the concertina behaviour (periodic static gripping) and increased the speed of lateral undulation. Increased incline: (1) elicited more concertina locomotion, (2) decreased speed and (3) increased the threshold peg height that elicited lateral undulation. Boiga irregularis was the fastest species, and it used lateral undulation on the most surfaces, including a vertical cylinder with pegs only 1 mm high. Overall, B. constrictor was the slowest and used the most concertina locomotion, but this species climbed steep, smooth surfaces faster than P. guttatus. Our results illustrate how morphology and two different aspects of habitat structure can have interactive effects on organismal performance and behaviour. Notably, a sharper keel facilitated exploiting shorter protrusions to prevent slipping and provide propulsion, which became increasingly important as surface steepness increased.

Keywords: Biomechanics; Climbing; Habitat structure; Morphology; Movement ecology; Reptile; Scales; Slope; Tree; Tree bark.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Behavior, Animal
  • Biomechanical Phenomena
  • Boidae / anatomy & histology*
  • Boidae / physiology*
  • Colubridae / anatomy & histology*
  • Colubridae / physiology*
  • Ecosystem
  • Locomotion*
  • Surface Properties
  • Trees