Taming of 3,4-Di(nitramino)furazan

J Am Chem Soc. 2015 Dec 30;137(51):15984-7. doi: 10.1021/jacs.5b09831. Epub 2015 Dec 17.

Abstract

Highly energetic 3,4-di(nitramino)furazan (1, DNAF) was synthesized and confirmed structurally by using single-crystal X-ray diffraction. Its highly sensitive nature can be attributed to the shortage of hydrogen-bonding interactions and an interactive nitro chain in the crystal structure. In order to stabilize this structure, a series of corresponding nitrogen-rich salts (3-10) has been prepared and fully characterized. Among these energetic materials, dihydrazinium 3,4-dinitraminofurazanate (5) exhibits a very promising detonation performance (νD = 9849 m s(-1); P = 40.9 GPa) and is one of the most powerful explosives to date. To ensure the practical applications of 5, rather than preparing the salts of 1 through acid-base reactions, an alternative route through the nitration of N-ethoxycarbonyl-protected 3,4-diaminofurazan and aqueous alkaline workup was developed.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.