The Impact of Ambulance and Patient Diversion on Crowdedness of Multiple Emergency Departments in a Region

PLoS One. 2015 Dec 11;10(12):e0144227. doi: 10.1371/journal.pone.0144227. eCollection 2015.

Abstract

Emergency department (ED) overcrowding threatens healthcare quality. Ambulance diversion (AD) may relieve ED overcrowding; however, diverting patients from an overcrowded ED will load neighboring EDs with more patients and may result in regional overcrowding. The purpose of this study was to evaluate the impact of different diversion strategies on the crowdedness of multiple EDs in a region. The importance of regional coordination was also explored. A queuing model for patient flow was utilized to develop a computer program for simulating AD among EDs in a region. Key parameters, including patient arrival rates, percentages of patients of different acuity levels, percentage of patients transported by ambulance, and total resources of EDs, were assigned based on real data. The crowdedness indices of each ED and the regional crowdedness index were assessed to evaluate the effectiveness of various AD strategies. Diverting patients equally to all other EDs in a region is better than diverting patients only to EDs with more resources. The effect of diverting all ambulance-transported patients is similar to that of diverting only low-acuity patients. To minimize regional crowdedness, ambulatory patients should be sent to proper EDs when AD is initiated. Based on a queuing model with parameters calibrated by real data, patient flows of EDs in a region were simulated by a computer program. From a regional point of view, randomly diverting ambulatory patients provides almost no benefit. With regards to minimizing the crowdedness of the whole region, the most promising strategy is to divert all patients equally to all other EDs that are not already crowded. This result implies that communication and coordination among regional hospitals are crucial to relieve overall crowdedness. A regional coordination center may prioritize AD strategies to optimize ED utility.

MeSH terms

  • Ambulance Diversion*
  • Ambulances*
  • Computer Simulation
  • Crowding*
  • Emergency Service, Hospital*
  • Hospitals*
  • Humans
  • Taiwan

Grants and funding

The authors received no specific funding for this work.