Reversible strain-induced magnetization switching in FeGa nanomagnets: Pathway to a rewritable, non-volatile, non-toggle, extremely low energy straintronic memory

Sci Rep. 2015 Dec 14:5:18264. doi: 10.1038/srep18264.

Abstract

We report reversible strain-induced magnetization switching between two stable/metastable states in ~300 nm sized FeGa nanomagnets delineated on a piezoelectric PMN-PT substrate. Voltage of one polarity applied across the substrate generates compressive strain in a nanomagnet and switches its magnetization to one state, while voltage of the opposite polarity generates tensile strain and switches the magnetization back to the original state. The two states can encode the two binary bits, and, using the right voltage polarity, one can write either bit deterministically. This portends an ultra-energy-efficient non-volatile "non-toggle" memory.

Publication types

  • Research Support, Non-U.S. Gov't