New chrysin-functionalized silica-core shell magnetic nanoparticles for the magnetic solid phase extraction of copper ions from water samples

Talanta. 2016:148:191-9. doi: 10.1016/j.talanta.2015.10.062. Epub 2015 Oct 23.

Abstract

This study describes the synthesis, characterization and application of a new chrysin-based silica core-shell magnetic nanoparticles (Fe3O4@SiO2-N-chrysin) as an adsorbent for the preconcentration of Cu(II) from aqueous environment. The morphology, thermal stability and magnetic property of Fe3O4@SiO2-N-chrysin were analyzed using FTIR, FESEM, TEM, XRD, thermal analysis and VSM. The extraction efficiency of Fe3O4@SiO2-N-chrysin was analyzed using the batch wise method with flame atomic absorption spectrometry. Parameters such as the pH, the sample volume, the adsorption-desorption time, the concentration of the desorption solvent, the desorption volume, the interference effects and the regeneration of the adsorbent were optimized. It was determined that Cu(II) adsorption is highly pH-dependent, and a high recovery (98%) was achieved at a pH 6. The limit of detection (S/N=3), the limit of quantification (S/N=10), the preconcentration factor and the relative standard deviation for Cu(II) extraction were 0.3 ng mL(-1), 1 ng mL(-1), 100 and 1.9% (concentration=30 ng mL(-1), n=7), respectively. Excellent relative recoveries of 97-104% (%RSD<3.12) were achieved from samples from a spiked river, a lake and tap water. The MSPE method was also validated using certified reference materials SLRS-5 with good recovery (92.53%).

Keywords: Cu(II) preconcentration; Fe(3)O(4)@SiO(2)-N-chrysin; Flame atomic absorption spectrometry; Magnetic nanoparticles; Magnetic solid phase extraction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Copper / analysis*
  • Drinking Water / analysis
  • Flavonoids / chemistry*
  • Fresh Water / analysis*
  • Ions
  • Magnetite Nanoparticles / chemistry*
  • Silicon Dioxide / chemistry*
  • Solid Phase Extraction / methods*
  • Water Pollutants, Chemical / analysis

Substances

  • Drinking Water
  • Flavonoids
  • Ions
  • Magnetite Nanoparticles
  • Water Pollutants, Chemical
  • chrysin
  • Silicon Dioxide
  • Copper