Real-Time Observation of Reconstruction Dynamics on TiO2(001) Surface under Oxygen via an Environmental Transmission Electron Microscope

Nano Lett. 2016 Jan 13;16(1):132-7. doi: 10.1021/acs.nanolett.5b03277. Epub 2015 Dec 15.

Abstract

The surface atomic structure has a remarkable impact on the physical and chemical properties of metal oxides and has been studied extensively by scanning tunneling microscopy. However, acquiring real-time information on the formation and evolution of the surface structure remains a great challenge. Here we use environmental transmission electron microscopy to directly observe the stress-induced reconstruction dynamics on the (001) surface of anatase TiO2. Our in situ results unravel for the first time how the (1 × 4) reconstruction forms and how the metastable (1 × 3) and (1 × 5) patterns transform into the (1 × 4) surface stable structure. With the support of first-principles calculations, we find that the surface evolution is driven by both low coordinated atoms and surface stress. This work provides a complete picture of the structural evolution of TiO2(001) under oxygen atmosphere and paves the way for future studies of the reconstruction dynamics of other solid surfaces.

Keywords: Oxide surface; environmental transmission electron microscopy (ETEM); in situ TEM; surface dynamics; surface evolution; surface reconstruction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Atmosphere / chemistry*
  • Microscopy, Electron, Transmission
  • Microscopy, Scanning Tunneling
  • Oxygen / chemistry*
  • Surface Properties*
  • Titanium / chemistry*

Substances

  • titanium dioxide
  • Titanium
  • Oxygen