Effective Heat Dissipation from Color-Converting Plates in High-Power White Light Emitting Diodes by Transparent Graphene Wrapping

ACS Nano. 2016 Jan 26;10(1):238-45. doi: 10.1021/acsnano.5b06734. Epub 2015 Dec 14.

Abstract

We have developed a hybrid phosphor-in-glass plate (PGP) for application in a remote phosphor configuration of high-power white light emitting diodes (WLEDs), in which single-layer graphene was used to modulate the thermal characteristics of the PGP. The degradation of luminescence in the PGP following an increase in temperature could be prevented by applying single-layer graphene. First, it was observed that the emission intensity of the PGP was enhanced by about 20% with graphene wrapping. Notably, the surface temperature of the graphene-wrapped PGP (G-PGP) was found to be higher than that of the bare PGP, implying that the graphene layer effectively acted as a heat dissipation medium on the PGP surface to reduce the thermal quenching of the constituent phosphors. Moreover, these experimental observations were clearly verified through a two-dimensional cellular automata simulation technique and the underlying mechanisms were analyzed. As a result, the proposed G-PGP was found to be efficient in maintaining the luminescence properties of the WLED, and is a promising development in high power WLED applications. This research could be further extended to generate a new class of optical or optoelectronic materials with possible uses in a variety of applications.

Keywords: LEDs; cellular automata; graphene; heat dissipation.

Publication types

  • Research Support, Non-U.S. Gov't