Flexible Organic Transistors with Controlled Nanomorphology

Nano Lett. 2016 Jan 13;16(1):314-9. doi: 10.1021/acs.nanolett.5b03868. Epub 2015 Dec 14.

Abstract

We report the controlled nanomorphology of semiconducting polymers on chemically and mechanically stable nanogrooved polymer substrates. By employing silicon dioxide thin films with finely adjusted thicknesses on nanogrooved polymer substrates, semiconducting polymer thin films oriented and aligned along the nanogrooves were obtained. Organic field-effect transistors (OFETs) fabricated from the oriented semiconducting polymer, poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo-[3,4-c]pyridine] (PCDTPT), yielded saturation hole mobilities as high as 19.3 cm(2) V(-1 )s(-1), and the flexible "plastic" transistors demonstrated excellent mechanical stability under various bending conditions. These results represent important progress for solution-processed flexible OFETs and demonstrate that directed self-assembly of semiconducting polymers can be achieved by soft nanostructures.

Keywords: Flexible organic field-effect transistor; atomic layer deposition; directed self-assembly; nanoimprint; nanomorphology control; semiconducting polymer.

Publication types

  • Research Support, Non-U.S. Gov't