Hydrogeochemical evolution of inland lakes' water: A study of major element geochemistry in the Wadi El Raiyan depression, Egypt

J Adv Res. 2015 Nov;6(6):1031-44. doi: 10.1016/j.jare.2014.12.008. Epub 2015 Jan 3.

Abstract

Wadi El Raiyan is a great depression located southwest of Cairo in the Western Desert of Egypt. Lake Qarun, located north of the study area, is a closed basin with a high evaporation rate. The source of water in the lake is agricultural and municipal drainage from the El Faiyum province. In 1973, Wadi El Raiyan was connected with the agricultural wastewater drainage system of the Faiyum province and received water that exceeded the capacity of Lake Qarun. Two hydrogeological regimes have been established in the area: (i) higher cultivated land and (ii) lower Wadi El Raiyan depression lakes. The agricultural drainage water of the cultivated land has been collected in one main drain (El Wadi Drain) and directed toward the Wadi El Raiyan depression, forming two lakes at different elevations (upper and lower). In the summer of 2012, the major chemical components were studied using data from 36 stations distributed over both hydrogeological regimes in addition to one water sample collected from Bahr Youssef, the main source of freshwater for the Faiyum province. Chemical analyses were made collaboratively. The major ion geochemical evolution of the drainage water recharging the El Raiyan depression was examined. Geochemically, the Bahr Youssef sample is considered the starting point in the geochemical evolution of the studied surface water. In the cultivated area, major-ion chemistry is generally influenced by chemical weathering of rocks and minerals that are associated with anthropogenic inputs, as well as diffuse urban and/or agricultural drainage. In the depression lakes, the water chemistry generally exhibits an evaporation-dependent evolutionary trend that is further modified by cation exchange and precipitation of carbonate minerals.

Keywords: El Raiyan depression; Faiyum; Geochemical evolution; Major elements; Surface water.