Tuning Equilibrium Compositions in Colloidal Cd1-xMnxSe Nanocrystals Using Diffusion Doping and Cation Exchange

ACS Nano. 2016 Jan 26;10(1):910-8. doi: 10.1021/acsnano.5b07389. Epub 2015 Dec 14.

Abstract

The physical properties of semiconductor nanocrystals can be tuned dramatically via composition control. Here, we report a detailed investigation of the synthesis of high-quality colloidal Cd1-xMnxSe nanocrystals by diffusion doping of preformed CdSe nanocrystals. Until recently, Cd1-xMnxSe nanocrystals proved elusive because of kinetic incompatibilities between Mn(2+) and Cd(2+) chemistries. Diffusion doping allows Cd1-xMnxSe nanocrystals to be prepared under thermodynamic rather than kinetic control, allowing access to broader composition ranges. We now investigate this chemistry as a model system for understanding the characteristics of nanocrystal diffusion doping more deeply. From the present work, a Se(2-)-limited reaction regime is identified, in which Mn(2+) diffusion into CdSe nanocrystals is gated by added Se(2-), and equilibrium compositions are proportional to the amount of added Se(2-). At large added Se(2-) concentrations, a solubility-limited regime is also identified, in which x = xmax = ∼0.31, independent of the amount of added Se(2-). We further demonstrate that Mn(2+) in-diffusion can be reversed by cation exchange with Cd(2+) under exactly the same reaction conditions, purifying Cd1-xMnxSe nanocrystals back to CdSe nanocrystals with fine tunability. These chemistries offer exceptional composition control in Cd1-xMnxSe NCs, providing opportunities for fundamental studies of impurity diffusion in nanocrystals and for development of compositionally tuned nanocrystals with diverse applications ranging from solar energy conversion to spin-based photonics.

Keywords: cation exchange; diffusion doping; giant Zeeman effect; magnetic circular dichroism; nanocrystals; quantum dots.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.