Cyclotron production of (43)Sc for PET imaging

EJNMMI Phys. 2015 Dec;2(1):33. doi: 10.1186/s40658-015-0136-x. Epub 2015 Dec 4.

Abstract

Background: Recently, significant interest in (44)Sc as a tracer for positron emission tomography (PET) imaging has been observed. Unfortunately, the co-emission by (44)Sc of high-energy γ rays (E γ = 1157, 1499 keV) causes a dangerous increase of the radiation dose to the patients and clinical staff. However, it is possible to produce another radionuclide of scandium-(43)Sc-having properties similar to (44)Sc but is characterized by much lower energy of the concurrent gamma emissions. This work presents the production route of (43)Sc by α irradiation of natural calcium, its separation and purification processes, and the labeling of [DOTA,Tyr3] octreotate (DOTATATE) bioconjugate.

Methods: Natural CaCO3 and enriched [(40)Ca]CaCO3 were irradiated with alpha particles for 1 h in an energy range of 14.8-30 MeV at a beam current of 0.5 or 0.25 μA. In order to find the optimum method for the separation of (43)Sc from irradiated calcium targets, three processes previously developed for (44)Sc were tested. Radiolabeling experiments were performed with DOTATATE radiobioconjugate, and the stability of the obtained (43)Sc-DOTATATE was tested in human serum.

Results: Studies of (nat)CaCO3 target irradiation by alpha particles show that the optimum alpha particle energies are in the range of 24-27 MeV, giving 102 MBq/μA/h of (43)Sc radioactivity which creates the opportunity to produce several GBq of (43)Sc. The separation experiments performed indicate that, as with (44)Sc, due to the simplicity of the operations and because of the chemical purity of the (43)Sc obtained, the best separation process is when UTEVA resin is used. The DOTATATE conjugate was labeled by the obtained (43)Sc with a yield >98 % at elevated temperature.

Conclusions: Tens of GBq activities of (43)Sc of high radionuclidic purity can be obtainable for clinical applications by irradiation of natural calcium with an alpha beam.

Keywords: Alpha irradiation; Calcium target; Cyclotron production; PET radiopharmaceuticals; Scandium-43.