Conversion of volatile alcohols into their glucosides in Arabidopsis

Commun Integr Biol. 2015 Jan 29;8(1):e992731. doi: 10.4161/19420889.2014.992731. eCollection 2015 Jan-Feb.

Abstract

Exposure of tomato plants to volatile chemicals emitted from common cutworm (Spodoptera litura)-infested conspecifics led to accumulation of the glycoside, (Z)-3-hexenyl vicianoside. Accumulation of (Z)-3-hexenyl vicianoside in the exposed plants has adverse impacts on the performance of the common cutworms. The aglycon of (Z)-3-hexenyl vicianoside is derived from airborne (Z)-3-hexenol emitted from infested plants. The ability to incorporate and convert (Z)-3-hexenol to its corresponding glycoside is widely conserved in an array of plant species. However, the specificity of this ability to discriminate between the chemical structures of different volatile alcohols remains unknown. In this study, we investigated glycosylation of several volatile alcohols in Arabidopsis (Arabidopsis thaliana). The exposure of Arabidopsis to a variety of volatile alcohols, (Z)-2-pentenol, (Z)-3-hexenol, (Z)-3-heptenol, (Z)-3-octenol, (Z)-3-nonenol, cyclohexanol, benzyl alcohol, verbenol, perillyl alcohol, myrtenol, geraniol, or linalool led to the detection of the putative corresponding glucosides. These results suggest that Arabidopsis might convert a broad range of volatile alcohols into the corresponding glucosides.

Keywords: bioconversion; glucoside; glucosylation; green leaf volatile; terpene alcohol; volatile compound; volatile reception.