Theoretical Investigation of the Geometries and UV-vis Spectra of Poly(l-glutamic acid) Featuring a Photochromic Azobenzene Side Chain

J Chem Theory Comput. 2008 Apr;4(4):637-45. doi: 10.1021/ct700188w.

Abstract

The geometries and UV-vis spectra of azobenzene dyes grafted as a side chain on poly(l-glutamic acid) have been investigated using a combination of quantum mechanics/molecular mechanics (QM/MM) and time-dependent density functional theory (TD-DFT) methods at the TD-PBE0/6-311+G(d,p)//B3LYP/6-311G(d,p):Amber ff99 level of theory. The influence of the secondary structure of the polypeptide on the electronic properties of both the trans and cis conformations of azobenzene dyes has been studied. It turns out that the grafted dyes exhibit a red-shift of the π → π* absorption energies mainly due to the auxochromic shift induced by the peptidic group used to link the chromophoric unit to the polypeptide and that specific interactions between the glutamic side chain and the azobenzene moiety lead to a large blue-shift of the n → π* transition.