Cryptic eco-evolutionary dynamics

Ann N Y Acad Sci. 2015 Dec:1360:120-44. doi: 10.1111/nyas.12974.

Abstract

Natural systems harbor complex interactions that are fundamental parts of ecology and evolution. These interactions challenge our inclinations and training to seek the simplest explanations of patterns in nature. Not least is the likelihood that some complex processes might be missed when their patterns look similar to predictions for simpler mechanisms. Along these lines, theory and empirical evidence increasingly suggest that environmental, ecological, phenotypic, and genetic processes can be tightly intertwined, resulting in complex and sometimes surprising eco-evolutionary dynamics. The goal of this review is to temper inclinations to unquestioningly seek the simplest explanations in ecology and evolution, by recognizing that some eco-evolutionary outcomes may appear very similar to purely ecological, purely evolutionary, or even null expectations, and thus be cryptic. We provide theoretical and empirical evidence for observational biases and mechanisms that might operate among the various links in eco-evolutionary feedbacks to produce cryptic patterns. Recognition that cryptic dynamics can be associated with outcomes like stability, resilience, recovery, or coexistence in a dynamically changing world provides added impetus for finding ways to study them.

Keywords: coevolution; community genetics; eco-evolutionary feedback; evolutionary rescue; rapid or contemporary evolution; stabilizing selection.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Biological Evolution*
  • Ecosystem*
  • Humans