Optimizing Adhesive Design by Understanding Compliance

ACS Appl Mater Interfaces. 2015 Dec 23;7(50):27771-81. doi: 10.1021/acsami.5b08934. Epub 2015 Dec 10.

Abstract

Adhesives have long been designed around a trade-off between adhesive strength and releasability. Geckos are of interest because they are the largest organisms which are able to climb utilizing adhesive toepads, yet can controllably release from surfaces and perform this action over and over again. Attempting to replicate the hierarchical, nanoscopic features which cover their toepads has been the primary focus of the adhesives field until recently. A new approach based on a scaling relation which states that reversible adhesive force capacity scales with (A/C)(1/2), where A is the area of contact and C is the compliance of the adhesive, has enabled the creation of high strength, reversible adhesives without requiring high aspect ratio, fibrillar features. Here we introduce an equation to calculate the compliance of adhesives, and utilize this equation to predict the shear adhesive force capacity of the adhesive based on the material components and geometric properties. Using this equation, we have investigated important geometric parameters which control force capacity and have shown that by controlling adhesive shape, adhesive force capacity can be increased by over 50% without varying pad size. Furthermore, we have demonstrated that compliance of the adhesive far from the interface still influences shear adhesive force capacity. Utilizing this equation will allow for the production of adhesives which are optimized for specific applications in commercial and industrial settings.

Keywords: adhesive optimization; adhesives; bioinspiration; gecko-inspired adhesion; scaling.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adhesiveness
  • Adhesives / chemistry*
  • Animals
  • Lizards / physiology*
  • Shear Strength
  • Surface Properties

Substances

  • Adhesives