Identification of drug-target interaction from interactome network with 'guilt-by-association' principle and topology features

Bioinformatics. 2016 Apr 1;32(7):1057-64. doi: 10.1093/bioinformatics/btv695. Epub 2015 Nov 26.

Abstract

Motivation: Identifying drug-target protein interaction is a crucial step in the process of drug research and development. Wet-lab experiment are laborious, time-consuming and expensive. Hence, there is a strong demand for the development of a novel theoretical method to identify potential interaction between drug and target protein.

Results: We use all known proteins and drugs to construct a nodes- and edges-weighted biological relevant interactome network. On the basis of the 'guilt-by-association' principle, novel network topology features are proposed to characterize interaction pairs and random forest algorithm is employed to identify potential drug-protein interaction. Accuracy of 92.53% derived from the 10-fold cross-validation is about 10% higher than that of the existing method. We identify 2272 potential drug-target interactions, some of which are associated with diseases, such as Torg-Winchester syndrome and rhabdomyosarcoma. The proposed method can not only accurately predict the interaction between drug molecule and target protein, but also help disease treatment and drug discovery.

Contacts: zhanchao8052@gmail.com or ceszxy@mail.sysu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

MeSH terms

  • Algorithms
  • Drug Delivery Systems*
  • Drug Discovery*
  • Humans
  • Protein Conformation
  • Protein Interaction Maps*
  • Proteins

Substances

  • Proteins