Probing Intramolecular versus Intermolecular CO2 Adsorption on Amine-Grafted SBA-15

Langmuir. 2015 Dec 15;31(49):13350-60. doi: 10.1021/acs.langmuir.5b03657. Epub 2015 Dec 4.

Abstract

A mesoporous silica SBA-15 is modified with an array of amine-containing organosilanes including (i) propylamine, SiCH2CH2CH2NH2 (MONO), (ii) propylethylenediamine, SiCH2CH2CH2NHCH2CH2NH2 (DI), (iii) propyldiethylenetriamine, SiCH2CH2CH2NHCH2CH2NHCH2CH2NH2 (TRI), and (iv) propyltriethylenetetramine, SiCH2CH2CH2NHCH2CH2N(CH2CH2NH2)2 (TREN) and the low loading silane adsorbents (∼0.45 mmol silane/g) are evaluated for their CO2 adsorption properties, with a focus on gaining insight into the propensity for intramolecular vs intermolecular CO2 adsorption. Adsorption isotherms at low CO2 coverages are measured while simultaneously recording the heat evolved via a Tian-Calvet calorimeter. The results are compared on a silane molecule efficiency basis (mol CO2 adsorbed/mol silane) to assess the potential for intramolecular CO2 adsorption, employing two amine groups in a single silane molecule. As the number of amines in the silane molecule increases (MONO < DI < TREN ∼ TRI), the silane molecule efficiency is enhanced owing to the ability to intramolecularly capture CO2. Analysis of the CO2 uptake for samples with the surface silanols removed by capping demonstrates that cooperative uptake due to amine-CO2-silanol interactions is also possible over these adsorbents and is the primary mode of sorption for the MONO material at the studied low silane loading. As the propensity for intramolecular CO2 capture increases due to the presence of multiple amines in a single silane molecule (MONO < DI < TREN ∼ TRI), the measured heat of adsorption also increases. This study of various amine-containing silanes at low coverage is the first to provide significant, direct evidence for intramolecular CO2 capture in a single silane molecule. Furthermore, it provides evidence for the relative heats of adsorption for physisorption on a silanol laden surface (ca. 37 kJ/mol), a silanol-capped surface (ca. 25 kJ/mol), via amine-CO2-silanol interactions (ca. 46 kJ/mol), and via amine-CO2-amine interactions at low surface coverages (ca. 65 kJ/mol).