Nanoporous microscale microbial incubators

Lab Chip. 2016 Feb 7;16(3):480-8. doi: 10.1039/c5lc00978b.

Abstract

Reconstruction of phylogenetic trees based on 16S rRNA gene sequencing reveals abundant microbial diversity that has not been cultured in the laboratory. Many attribute this so-called 'great plate count anomaly' to traditional microbial cultivation techniques, which largely facilitate the growth of a single species. Yet, it is widely recognized that bacteria in nature exist in complex communities. One technique to increase the pool of cultivated bacterial species is to co-culture multiple species in a simulated natural environment. Here, we present nanoporous microscale microbial incubators (NMMI) that enable high-throughput screening and real-time observation of multi-species co-culture. The key innovation in NMMI is that they facilitate inter-species communication while maintaining physical isolation between species, which is ideal for genomic analysis. Co-culture of a quorum sensing pair demonstrates that the NMMI can be used to culture multiple species in chemical communication while monitoring the growth dynamics of individual species.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bioreactors*
  • Escherichia coli / growth & development*
  • Nanopores*
  • Porosity