Structural and electronic properties of photoexcited TiO2 nanoparticles from first principles

J Chem Theory Comput. 2015 Feb 10;11(2):635-45. doi: 10.1021/ct500815x.

Abstract

The structure and energetics of excitons and individual electron and hole polarons in a model anatase TiO2 nanoparticle (NP) are investigated by means of Density Functional Theory (DFT) and Time Dependent (TD)-DFT calculations. The effect of the Hartree-Fock exchange (HF-exc) contribution in the description of TiO2 NPs with unpaired electrons is examined by comparing the results from semilocal and hybrid DFT functionals with different HF-exc percentages, including a long-range corrected hybrid functional. The performances of TD-DFT and ground state (SCF) DFT approaches in the description of the photoexcited polaron states in TiO2 NPs are also analyzed. Our results confirm that the HF-exc contribution is essential to properly describe the self-trapping of the charge carriers. They also suggest that long-range corrected functionals are needed to properly describe excited state relaxation in TiO2 NPs. TD-DFT geometry optimization of the lowest excited singlet and triplet states deliver photoluminescence values in close agreement with the experimental data.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Electrons*
  • Molecular Structure
  • Nanoparticles / chemistry*
  • Photochemical Processes
  • Quantum Theory*
  • Titanium / chemistry*

Substances

  • titanium dioxide
  • Titanium