Field-scale study of the influence of differing remediation strategies on trace metal geochemistry in metal mine tailings from the Irish Midlands

Environ Sci Pollut Res Int. 2016 Mar;23(6):5592-608. doi: 10.1007/s11356-015-5725-7. Epub 2015 Nov 17.

Abstract

Mine tailings represent a globally significant source of potentially harmful elements (PHEs) to the environment. The management of large volumes of mine tailings represents a major challenge to the mining industry and environmental managers. This field-scale study evaluates the impact of two highly contrasting remediation approaches to the management and stabilisation of mine tailings. The geochemistry of the tailings, overlying amendment layers and vegetation are examined in the light of the different management approaches. Pseudo-total As, Cd and Pb concentrations and solid-state partitioning (speciation), determined via sequential extraction, were established for two Tailings Management Facilities (TMFs) in Ireland subjected to the following: (1) a 'walk-away' approach (Silvermines) and (2) application of an amendment layer (Galmoy). PHE concentrations in roots and herbage of grasses growing on the TMFs were also determined. Results identify very different PHE concentration profiles with depth through the TMFs and the impact of remediation approach on concentrations and their potential bioavailability in the rooting zone of grass species. Data also highlight the importance of choice of grass species in remediation approaches and the benefits of relatively shallow-rooting Agrostis capillaris and Festuca rubra varieties. In addition, data from the Galmoy TMF indicate the importance of regional soil geochemistry for interpreting the influence of the PHE geochemistry of capping and amendment layers applied to mine tailings.

Keywords: Metals; Mine tailings; Phytoremediation; Plant uptake; Speciation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Environmental Restoration and Remediation*
  • Festuca / metabolism
  • Ireland
  • Metals, Heavy / analysis
  • Metals, Heavy / chemistry*
  • Mining*
  • Soil
  • Soil Pollutants / analysis
  • Soil Pollutants / chemistry*
  • Trace Elements

Substances

  • Metals, Heavy
  • Soil
  • Soil Pollutants
  • Trace Elements