Living Shorelines: Coastal Resilience with a Blue Carbon Benefit

PLoS One. 2015 Nov 16;10(11):e0142595. doi: 10.1371/journal.pone.0142595. eCollection 2015.

Abstract

Living shorelines are a type of estuarine shoreline erosion control that incorporates native vegetation and preserves native habitats. Because they provide the ecosystem services associated with natural coastal wetlands while also increasing shoreline resilience, living shorelines are part of the natural and hybrid infrastructure approach to coastal resiliency. Marshes created as living shorelines are typically narrow (< 30 m) fringing marshes with sandy substrates that are well flushed by tides. These characteristics distinguish living shorelines from the larger meadow marshes in which most of the current knowledge about created marshes was developed. The value of living shorelines for providing both erosion control and habitat for estuarine organisms has been documented but their capacity for carbon sequestration has not. We measured carbon sequestration rates in living shorelines and sandy transplanted Spartina alterniflora marshes in the Newport River Estuary, North Carolina. The marshes sampled here range in age from 12 to 38 years and represent a continuum of soil development. Carbon sequestration rates ranged from 58 to 283 g C m-2 yr-1 and decreased with marsh age. The pattern of lower sequestration rates in older marshes is hypothesized to be the result of a relative enrichment of labile organic matter in younger sites and illustrates the importance of choosing mature marshes for determination of long-term carbon sequestration potential. The data presented here are within the range of published carbon sequestration rates for S. alterniflora marshes and suggest that wide-scale use of the living shoreline approach to shoreline management may come with a substantial carbon benefit.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomass
  • Carbon / chemistry
  • Carbon Sequestration*
  • Conservation of Natural Resources*
  • Environmental Monitoring
  • Estuaries
  • North Carolina
  • Poaceae / physiology*
  • Rivers
  • Soil / chemistry
  • Time Factors
  • Wetlands

Substances

  • Soil
  • Carbon

Grants and funding

This work was supported by the Defense Coastal Estuarine Research Program, funded by the Strategic Environmental Research and Development Program (SERDP). The funder provided support in the form of salaries for authors [JLD] through a contract with Consolidated Safety Services (CSS). Neither the funding agency, nor CSS had any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific role of authors are articulated in the ‘author contributions’ section.