Influence of extreme conditions on the formation and structures of caesium uranium(VI) arsenates

Dalton Trans. 2015 Dec 21;44(47):20735-44. doi: 10.1039/c5dt03842a. Epub 2015 Nov 16.

Abstract

Four new uranyl arsenates, Cs2[(UO2)(As2O7)] (1), α-Cs[(UO2)(HAs2O7)] (2), β-Cs[(UO2)(HAs2O7)] (3), Cs[(UO2)(HAs2O7)]·0.17H2O (4), were synthesized by high-temperature/high pressure (HT/HP) reactions at 900 °C and 3 GPa. These phases were subsequently characterised structurally as well as chemically. We demonstrated that compound 1 can also be obtained at ambient pressure. Compounds 1, 2, and 4 are based on two-dimensional (2D) anionic layers with two different topological types. The layers possess a similar composition, [(UO2)(As2O7)](2-) in 1 and [(UO2)(HAs2O7)](-) in 2 and 4. However, the presence of hydrogen in 2 and 4 leads to a change in coordination modes of the pyroarsenate groups. There are additional 0.17 H2O molecules per formula unit in 4, which cause slight distortions of the layers in 4. All these layers can be simplified to a common net, which is typical of autunite-like layered compounds. Compound 3 is a polymorph of compound 2, but the structural arrangements in these two are significantly different. The structure of 3 is based upon a three-dimensional (3D) framework, in which UO7 is coordinated by arsenate groups in order to form uranyl anion sheets, and UO6 is located within the interlayers. Bond valance analysis proved the presence of OH(-) groups in compounds 2, 3, and 4, respectively, and water molecules in 4. The Raman analyses enabled the study of the local environments of the arsenate and the uranyl groups within the investigated phases, respectively. It turned out that the applied HT/HP synthesis method strongly affects the crystal chemistry as well as the observed structural features of all obtained compounds.

Publication types

  • Research Support, Non-U.S. Gov't