Wall slip and fluidity in emulsion flow

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042313. doi: 10.1103/PhysRevE.92.042313. Epub 2015 Oct 21.

Abstract

The microscopic origin of apparent wall slip is studied systematically using a confocal laser scanning microscope coupled to a rheometer. We obtain flow curves on a model emulsion from classical macroscopic measurements that are compared with flow curves obtained from microscopic measurements. By controlling the wetting properties of the shearing walls, we show that the characteristic length used in the so-called fluidity model, proposed by Goyon et al. [Nature (London) 454, 84 (2008)], can be understood in terms of roughness induced by adsorbed droplets on the surface. Additionally, we disentangle two different effects that contribute to the difference between micro- and macrorheology. Both effects manifest themselves as gap-dependent viscosities due to either the formation of a lubricating layer close to the shearing walls or cooperative effects when the flow is strongly confined. Finally, we show that the cooperative effects can also be translated into an effective slip velocity.