CoPt/CeO2 catalysts for the growth of narrow diameter semiconducting single-walled carbon nanotubes

Nanoscale. 2015 Dec 14;7(46):19699-704. doi: 10.1039/c5nr05616k.

Abstract

For the application of single-walled carbon nanotubes (SWNTs) in nanoelectronic devices, effective techniques for the growth of semiconducting SWNTs (s-SWNTs) with a specific diameter are still a great challenge. Herein, we report a facile strategy for the selective growth of narrow diameter distributed s-SWNTs using CoPt/CeO2 catalysts. The addition of Pt into a Co catalyst dramatically reduces the diameter distributions and even the chirality distributions of the as-grown SWNTs. Oxygen vacancies that are provided by mesoporous CeO2 are responsible for creating an oxidative environment to in situ etch metallic SWNTs (m-SWNTs). Atomic force microscope (AFM) and Raman spectroscopy characterizations indicate a narrow diameter distribution of 1.32 ± 0.03 nm and the selective growth of s-SWNTs to 93%, respectively. In addition, electronic transport measurements also confirm that the Ion/Ioff ratio is mainly in the order of ∼10(3). This work provides an effective strategy for the facile fabrication of narrow diameter distributed s-SWNTs, which will be beneficial to fundamental research and the broad application of SWNTs for future nanoelectronics.

Publication types

  • Research Support, Non-U.S. Gov't