Combination of nonlinear ultrasonics and guided wave tomography for imaging the micro-defects

Ultrasonics. 2016 Feb:65:87-95. doi: 10.1016/j.ultras.2015.10.016. Epub 2015 Oct 30.

Abstract

The use of guided wave tomography has become an attractive alternative to convert ultrasonic wave raw data to visualized results for quantitative signal interpretation. For more accurate life prediction and efficient management strategies for critical structural components, there is a demand of imaging micro-damages in early stage. However, there is rarely investigation on guided wave tomographic imaging of micro-defects. One of the reasons for this might be that it becomes challenging to monitor tiny signal difference coefficient in a reliable manner for wave propagation in the specimens with micro-damages. Nonlinear acoustic signal whose frequency differs from that of the input signal can be found in the specimens with micro-damages. Therefore, the combination of guided wave tomography and nonlinear acoustic response induced by micro-damages could be a feasibility study for imaging micro-damages. In this paper, the nonlinear Rayleigh surface wave tomographic method is investigated to locate and size micro-corrosive defect region in an isotropic solid media. The variations of acoustic nonlinear responses of ultrasonic waves in the specimens with and without defects are used in guided wave tomographic algorithm to construct the images. The comparisons between images obtained by experimental signals and real defect region induced by hydrogen corrosion are presented in this paper. Results show that the images of defect regions with different shape, size and location are successfully obtained by this novel technique, while there is no visualized result constructed by conventional linear ultrasonic tomographic one. The present approach shows a potential for inspecting, locating and imaging micro-defects by nonlinear Rayleigh surface wave tomography.

Keywords: Imaging; Micro-defects; Nonlinearity; Rayleigh surface waves.