Controlling Size, Morphology, and Surface Composition of AgAu Nanodendrites in 15 s for Improved Environmental Catalysis under Low Metal Loadings

ACS Appl Mater Interfaces. 2015 Nov 25;7(46):25624-32. doi: 10.1021/acsami.5b08725. Epub 2015 Nov 16.

Abstract

In this work, a simple but powerful method for controlling the size and surface morphology of AgAu nanodendrites is presented. Control of the number of Ag nanoparticle seeds is found to provide a fast and effective route by which to manipulate the size and morphology of nanoparticles produced via a combined galvanic replacement and reduction reaction. A lower number of Ag nanoparticle seeds leads to larger nanodendrites with the particles' outer diameter being tunable in the range of 45-148 nm. The size and surface morphology of the nanodendrites was found to directly affect their catalytic activity. Specifically, we report on the activity of these AgAu nanodendrites in catalyzing the gas-phase oxidation of benzene, toluene and o-xylene, which is an important reaction for the removal of these toxic compounds from fuels and for environmental remediation. All produced nanodendrite particles were found to be catalytically active, even at low temperatures and low metal loadings. Surprisingly, the largest nanodendrites provided the greatest percent conversion efficiencies.

Keywords: BTX oxidation; bimetallic; gold; nanodendrites; silver.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.