70-kDa heat shock protein coated magnetic nanocarriers as a nanovaccine for induction of anti-tumor immune response in experimental glioma

J Control Release. 2015 Dec 28;220(Pt A):329-340. doi: 10.1016/j.jconrel.2015.10.051. Epub 2015 Oct 29.

Abstract

Nanovaccines based on superparamagnetic iron oxide nanoparticles (SPIONs) provide a novel approach to induce the humoral and cell-based immune system to fight cancer. Herein, we increased the immunostimulatory capacity of SPIONs by coating them with recombinant heat shock protein 70 (Hsp70) which is known to chaperone antigenic peptides. After binding, Hsp70-SPIONs deliver immunogenic peptides from tumor lysates to dendritiс cells (DCs) and thus stimulate a tumor-specific, CD8+ cytotoxic T cell response. We could show that binding activity of Hsp70-SPIONs to the substrate-binding domain (SBD) is highly dependent on the ATPase activity of its nucleotide-binding domain NBD), as shown by (31)P NMR spectroscopy. Immunization of C6 glioma-bearing rats with DCs pulsed with Hsp70-SPIONs and tumor lysates resulted in a delayed tumor progression (as measured by MRI) and an increased overall survival. In parallel an increased IFNγ secretion were detected in the serum of these animals and immunohistological analysis of subsequent cryosections of the glioma revealed an enhanced infiltration of memory CD45RO+ and cytotoxic CD8+ T cells. Taken together the study demonstrates that magnetic nanocarriers such as SPIONs coated with Hsp70 can be applied as a platform for boosting anti-cancer immune responses.

Keywords: Brain tumor; Hsp70; Immunotherapy; Magnetic nanoparticles; Vaccine.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain Neoplasms / drug therapy*
  • Brain Neoplasms / immunology
  • Brain Neoplasms / metabolism
  • Brain Neoplasms / pathology
  • Cancer Vaccines / administration & dosage*
  • Cancer Vaccines / chemistry
  • Cancer Vaccines / immunology
  • Cancer Vaccines / metabolism
  • Coculture Techniques
  • Dendritic Cells / drug effects
  • Dendritic Cells / immunology
  • Dendritic Cells / metabolism
  • Dextrans / administration & dosage*
  • Dextrans / chemistry
  • Dextrans / immunology
  • Dextrans / metabolism
  • Drug Carriers*
  • Drug Compounding
  • Glioma / blood
  • Glioma / drug therapy*
  • Glioma / immunology
  • Glioma / metabolism
  • Glioma / pathology
  • HSP70 Heat-Shock Proteins / administration & dosage*
  • HSP70 Heat-Shock Proteins / chemistry
  • HSP70 Heat-Shock Proteins / immunology
  • HSP70 Heat-Shock Proteins / metabolism
  • Humans
  • Immunity, Cellular / drug effects
  • Immunity, Humoral / drug effects
  • Immunization
  • Interferon-gamma / blood
  • K562 Cells
  • Lymphocytes, Tumor-Infiltrating / drug effects
  • Lymphocytes, Tumor-Infiltrating / immunology
  • Lymphocytes, Tumor-Infiltrating / metabolism
  • Magnetic Resonance Imaging
  • Magnetite Nanoparticles / administration & dosage*
  • Magnetite Nanoparticles / chemistry
  • Male
  • Melanoma, Experimental
  • Mice
  • Nanomedicine
  • Protein Interaction Domains and Motifs
  • Proton Magnetic Resonance Spectroscopy
  • Rats, Wistar
  • T-Lymphocytes, Cytotoxic / drug effects
  • T-Lymphocytes, Cytotoxic / immunology
  • T-Lymphocytes, Cytotoxic / metabolism
  • Time Factors
  • Tumor Burden / drug effects

Substances

  • Cancer Vaccines
  • Dextrans
  • Drug Carriers
  • HSP70 Heat-Shock Proteins
  • Magnetite Nanoparticles
  • Interferon-gamma
  • ferumoxides