SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence

Plant J. 2015 Dec;84(6):1114-23. doi: 10.1111/tpj.13067. Epub 2015 Dec 9.

Abstract

Leaf senescence is the terminal phenotype of plant leaf development, and ethylene is a major plant hormone inducing leaf senescence. Recent studies have shown that abscisic acid (ABA) also induces leaf senescence. However, the detailed mechanisms of ABA-induced leaf senescence remain unclear. We focused on the A subfamily of stress-responsive NAC (SNAC-A) transcription factors, the expression of which is induced by abiotic stresses, particularly ABA. Gene expression analysis revealed that seven SNAC-A genes including ANAC055, ANAC019, ANAC072/RD26, ANAC002/ATAF1, ANAC081/ATAF2, ANAC102 and ANAC032 were induced by long-term treatment with ABA and/or during age-dependent senescence. The SNAC-A septuple mutant clearly showed retardation of ABA-inducible leaf senescence. Microarray analysis indicated that SNAC-As induce ABA- and senescence-inducible genes. In addition, comparison of the expression profiles of the downstream genes of SNAC-As and ABA-responsive element (ABRE)-binding protein (AREB)/ABRE-binding factor (ABF) (AREB/ABFs) indicates that SNAC-As induce a different set of ABA-inducible genes from those mediated by AREB/ABFs. These results suggest that SNAC-As play crucial roles in ABA-induced leaf senescence signaling. We also discuss the function of SNAC-As in the transcriptional change of leaf senescence as well as in ABA response under abiotic stress conditions.

Keywords: Arabidopsis thaliana; NAC; abscisic acid; leaf senescence; transcription factor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Abscisic Acid / pharmacology*
  • Arabidopsis / genetics
  • Arabidopsis / metabolism*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Gene Expression Regulation, Plant / physiology*
  • Plant Leaves / drug effects
  • Plant Leaves / metabolism*
  • RNA, Plant / genetics
  • RNA, Plant / metabolism
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*

Substances

  • Arabidopsis Proteins
  • RNA, Plant
  • Transcription Factors
  • Abscisic Acid