Sensitivity of Bovine Tuberculosis Surveillance in Wildlife in France: A Scenario Tree Approach

PLoS One. 2015 Oct 30;10(10):e0141884. doi: 10.1371/journal.pone.0141884. eCollection 2015.

Abstract

Bovine tuberculosis (bTB) is a common disease in cattle and wildlife, with an impact on animal and human health, and economic implications. Infected wild animals have been detected in some European countries, and bTB reservoirs in wildlife have been identified, potentially hindering the eradication of bTB from cattle populations. However, the surveillance of bTB in wildlife involves several practical difficulties and is not currently covered by EU legislation. We report here the first assessment of the sensitivity of the bTB surveillance system for free-ranging wildlife launched in France in 2011 (the Sylvatub system), based on scenario tree modelling. Three surveillance system components were identified: (i) passive scanning surveillance for hunted wild boar, red deer and roe deer, based on carcass examination, (ii) passive surveillance on animals found dead, moribund or with abnormal behaviour, for wild boar, red deer, roe deer and badger and (iii) active surveillance for wild boar and badger. The application of these three surveillance system components depends on the geographic risk of bTB infection in wildlife, which in turn depends on the prevalence of bTB in cattle. We estimated the effectiveness of the three components of the Sylvatub surveillance system quantitatively, for each species separately. Active surveillance and passive scanning surveillance by carcass examination were the approaches most likely to detect at least one infected animal in a population with a given design prevalence, regardless of the local risk level and species considered. The awareness of hunters, which depends on their training and the geographic risk, was found to affect surveillance sensitivity. The results obtained are relevant for hunters and veterinary authorities wishing to determine the actual efficacy of wildlife bTB surveillance as a function of geographic area and species, and could provide support for decision-making processes concerning the enhancement of surveillance strategies.

MeSH terms

  • Animals
  • Animals, Wild / microbiology*
  • Cattle
  • Deer
  • Epidemiological Monitoring*
  • France
  • Models, Statistical
  • Sensitivity and Specificity
  • Sus scrofa
  • Tuberculosis, Bovine / epidemiology*

Grants and funding

The authors have no support or funding to report.