Load Carriage: An Integrated Risk Management Approach

J Strength Cond Res. 2015 Nov:29 Suppl 11:S119-28. doi: 10.1519/JSC.0000000000001029.

Abstract

Military load carriage (LC) gives rise to substantial risks to soldier health, tactical performance, and mission success. The aim of this article was to extract and synthesize the key findings of a series of LC research reports previously published by the authors. Five reviews and 6 studies were included, with key findings extracted and synthesized in tabulated and critical narrative form. The weight of a soldier's load is a source of risk for soldier's injuries and tactical task performance. The resulting level of risk is influenced by risk modifiers (like speed of march, terrain grade, and task type and duration) and risk controls (like administrative controls and physical conditioning). In the Australian context, these risk controls were limited, with soldiers carrying heavier loads than those mandated by doctrine and policy, and LC conditioning not meeting best practice. The diversity of LC contexts, combined with the influence of risk modifiers and risk controls, means that levels of risk associated with LC are not consistent and must be assessed on a case-by-case basis. Load weight and marching routes (terrains, gradients), distances, speed, and duration are all potentially treatable sources of LC-related risk. Potential risk treatments include not only commanders directly addressing these specific sources of risk to the extent feasible, on a case-by-case basis, when planning or conducting LC tasks but also improving administration controls (i.e., doctrine and policies) and personal protection (i.e., the physical conditioning of the soldier) as part of the hierarchy of controls. Practical application would involve commanders developing and implementing dedicated LC doctrine and policies and implementing and enforcing LC conditioning programs that meets best practice.

Publication types

  • Review

MeSH terms

  • Humans
  • Military Personnel*
  • Occupational Injuries / physiopathology
  • Occupational Injuries / prevention & control*
  • Risk Management / methods*
  • Weight-Bearing / physiology*