Polymeric scaffolds in tissue engineering: a literature review

J Biomed Mater Res B Appl Biomater. 2017 Feb;105(2):431-459. doi: 10.1002/jbm.b.33547. Epub 2015 Oct 23.

Abstract

The tissue engineering scaffold acts as an extracellular matrix that interacts to the cells prior to forming new tissues. The chemical and structural characteristics of scaffolds are major concerns in fabricating of ideal three-dimensional structure for tissue engineering applications. The polymer scaffolds used for tissue engineering should possess proper architecture and mechanical properties in addition to supporting cell adhesion, proliferation, and differentiation. Much research has been done on the topic of polymeric scaffold properties such as surface topographic features (roughness and hydrophilicity) and scaffold microstructures (pore size, porosity, pore interconnectivity, and pore and fiber architectures) that influence the cell-scaffold interactions. In this review, efforts were given to evaluate the effect of both chemical and structural characteristics of scaffolds on cell behaviors such as adhesion, proliferation, migration, and differentiation. This review would provide the fundamental information which would be beneficial for scaffold design in future. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 431-459, 2017.

Keywords: cell adhesion; differentiation; polymeric scaffolds; proliferation; tissue engineering.

Publication types

  • Review

MeSH terms

  • Animals
  • Cell Adhesion
  • Cell Differentiation*
  • Cell Movement*
  • Cell Proliferation*
  • Extracellular Matrix / chemistry*
  • Humans
  • Porosity
  • Tissue Scaffolds / chemistry*