Thermodynamic Properties of Carbosilane Dendrimers of the Sixth Generation with Ethylene Oxide Terminal Groups

J Phys Chem B. 2015 Nov 12;119(45):14527-35. doi: 10.1021/acs.jpcb.5b06786. Epub 2015 Nov 2.

Abstract

The temperature dependences of heat capacities of carbosilane dendrimers of the sixth generation with ethyleneoxide terminal groups, denoted as G6[(OCH2CH2)1OCH3]256 and G6[(OCH2CH2)3OCH3]256, were measured in the temperature range from T = (6 to 520) K by precision adiabatic calorimetry and differential scanning calorimetry (DSC). In the above temperature range the physical transformations, such as glass transition and high-temperature relaxation transition, were detected. The standard thermodynamic characteristics of the revealed transformations were determined and analyzed. The standard thermodynamic functions, namely, heat capacity Cp°(T), enthalpy H°(T) - H°(0), entropy S°(T) - S°(0), and Gibbs energy G°(T) - H°(0) for the range from T → 0 to 520 K, and the standard entropies of formation ΔfS° of the investigated dendrimers in the devitrified state at T = 298.15 K, were calculated per corresponding moles of the notional structural units. The standard thermodynamic properties of dendrimers under study were discussed and compared with literature data for carbosilane dendrimers with different functional terminal groups.