Improved carrier injection in GaN-based VCSEL via AlGaN/GaN multiple quantum barrier electron blocking layer

Opt Express. 2015 Oct 19;23(21):27145-51. doi: 10.1364/OE.23.027145.

Abstract

In this report, the improved lasing performance of the III-nitride based vertical-cavity surface-emitting laser (VCSEL) has been demonstrated by replacing the bulk AlGaN electron blocking layer (EBL) in the conventional VCSEL structure with an AlGaN/GaN multiple quantum barrier (MQB) EBL. The output power can be enhanced up to three times from 0.3 mW to 0.9 mW. In addition, the threshold current density of the fabricated device with the MQB-EBL was reduced from 12 kA/cm2 (9.5 mA) to 10.6 kA/cm2 (8.5 mA) compared with the use of the bulk AlGaN EBL. Theoretical calculation results suggest that the improved carrier injection efficiency can be mainly attributed to the partial release of the strain and the effect of quantum interference by using the MQB structure, hence increasing the effective barrier height of the conduction band.