Graphene-assisted nonlinear optical device for four-wave mixing based tunable wavelength conversion of QPSK signal

Opt Express. 2015 Oct 5;23(20):26158-67. doi: 10.1364/OE.23.026158.

Abstract

We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. Using such graphene-assisted nonlinear optical device, we experimentally demonstrate tunable wavelength conversion of a 10 Gbaud quadrature phase-shift keying (QPSK) signal by exploiting degenerate four-wave mixing (FWM) progress in graphene. We study the conversion efficiency as functions of the pump power and pump wavelength and evaluate the bit-error rate (BER) performance. The observed optical signal-to-noise ratio (OSNR) penalties for tunable QPSK wavelength conversion are less than 2.2 dB at a BER of 1 × 10(-3).