Performance analysis of the retractable dome for the Chinese Large Telescope

Opt Express. 2015 Oct 5;23(20):25376-404. doi: 10.1364/OE.23.025376.

Abstract

In order to quantitatively assess the influence of the retractable dome on the observational performance of the 4-m Chinese Large Telescope (CLT), an integrated analysis method based on computational fluid dynamics (CFD) and sub-harmonic phase screen is proposed in this paper. The pressure, the temperature, and the speed of air surrounding the retractable dome are attained by CFD simulations, and then the fluctuation of refractive index of air is calculated. Based on sub-harmonic phase screen algorithm, three kinds of performance evaluation parameters are presented: irradiance, phase of the target, and Full Width Half Maximum (FWHM). The wind tunnel tests (WT) with a 1:120 scaled model of the retractable dome for the CLT are conducted to verify the calculated precision of the CFD. The results show that the fluctuation of air refractive index surrounding the CLT is mainly caused by the inhomogeneous distribution of temperature and speed, and with the help of pier's height the impact of inhomogeneous air temperature from the ground layer on the fluctuation of air refractive index can be effectively decreased. Furthermore, the lower of the air speed is, the better performance of the retractable dome will be, and when the speed of air is less than 5m/s, the dome seeing induced by the retractable dome on the observational wave front is less than 0.13 arcsec.